Abstract
Recent anecdotal evidence and clinical observations suggest that high-dose vitamin D3 (cholecalciferol) supplementation may have an underappreciated anti-cancer effect. Concurrently, the metabolic theory of cancer, espoused by Thomas Seyfried and others, highlights the importance of mitochondrial bioenergetics and the Warburg effect in oncogenesis. This article synthesizes these perspectives, proposing that high-dose vitamin D3 can enhance mitochondrial function and provide the energetic “push” needed to carry out proper apoptosis—a process that can stall under conditions of metabolic insufficiency. We further explore how classic oncogenic mutations (e.g., TP53, RB1, PTEN, BCL-2 family genes) compromise apoptosis in ways that are exacerbated by impaired mitochondrial energy output. Drawing from case reports, mechanistic studies on vitamin D3 and histone deacetylases (particularly HDAC2), and the evolutionary logic that cancer may be a reversion to a more primordial cell state, we present a compelling case for high-dose vitamin D3 as an adjunctive or primary therapy that targets the metabolic underpinnings of malignancies.